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Phase Diagram and Free Energies of Vapor Films and
Tubes for a Confined Fluid1

K. Lum2 and D. Chandler2,3

When confined between two parallel drying surfaces that are separated by a
small distance, D, a liquid close to liquid-gas coexistence becomes metastable
and evaporates. This paper focuses on this surface-induced phase transition.
With mean field theory, we describe the pertinent phases and the corresponding
density profiles for a lattice gas model. In one of the three phases, vapor films
form between the liquid and the drying surfaces. Analytical estimates and Monte
Carlo simulations indicated that the pathway to evaporation involves the con-
certed action of high-amplitude fluctuations of the vapor-film interfaces and the
formation of vapor tubes that bridge these interfaces.

1. INTRODUCTION

When a liquid is in equilibrium with its vapor in the presence of a surface,
the liquid-gas interface is characterized in part by the angle it makes with
the surface. This contact angle, oC, is determined by the interfacial
energetics through the Young-Dupre equation, asg — aSl = egl cos 0C, where
crsl, asg, and agl are the surface-liquid, the surface-gas, and the gas-liquid
surface tensions, respectively. For a drying surface, asl >asg, and thus the
contact angle 0C is greater than 90°. When a pair of drying surfaces are
arranged in parallel at a separation D and immersed in the liquid, the
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liquid between these surfaces may evaporate. This example of a surface-
induced phase transition occurs when the grand canonical free energies of
the confined liquid (£2,~ — pV + 2Aasl) and the confined gas (£2g~
— pg V + 2Aa s g ) are comparable [1, 2], Here, p is the bulk pressure and pg

is the pressure of the coexisting vapor, and the volume of the confined
region is V = AD.

The critical separation at which the confined vapor becomes thermo-
dynamically favorable is then given by

The second equality is obtained for an incompressible fluid by approximat-
i n g — pg by P1 Au, where p1 is the liquid density and AH is the difference
of the chemical potential of the bulk liquid from liquid-gas coexistence.
This relationship is analogous to the Kelvin equation for capillary conden-
sation. When agl is not small, but AH is small, Dc can be a very large
length. For instance, water at normal conditions is close to liquid-gas
coexistence. The resulting AH is so small that Dc~ 103 A in that case. This
paper is concerned with the formation of interfaces and the kinetic pathway
of this surface-induced transition.

In experiments measuring forces between two hydrophobic surfaces in
water [3, 4], at separations of about 100 A, the two surfaces jump into
contact. Additionally, the forces exhibit hysteresis in the inward and out-
ward going measurements, suggesting possible metastabilities associated
with first-order phase transitions. In analogous experiments [5], phase
separations of confined binary (aB) liquid mixture have also been investi-
gated. The solute species B is sparingly soluble in liquid a. Two surfaces
that favor the B species are allowed to approach in the slightly undersatu-
rated solution. A sudden inward jump of the surfaces (toward each other)
and condensation of the B-phase between the surfaces are observed.

Yaminsky et al. [6] suggested that the mechanism for the surface-
induced evaporation involves the formation of a vapor tube across the
two surfaces. When the vapor tube grows to a critical size, the metastable
liquid loses stability and evaporates. However, from the free energy for
nucleating a critical vapor tube,4 one would predict that the time scale for
evaporation is far too long to observe in any physically accessible time.
Yet, the evaporation can be observed during the course of a relatively
short Monte Carlo trajectory [7]. Therefore, the pathway to evaporation

4 From standard surface thermodynamics, the tree energy to form a vapor tube of radius r
is 2nrDagl + 2nr 2(a s g + (a s l ) . The free energy for forming a vapor tube of critical size is then
7iD 2agl /2cosO c (~180 kBT for D=10 A, alg = 70 d y n e c m - 1 , Oc= 180°, and T=298 K).



involves something different than simply tube formation. Before focusing
on the pathway, it is useful to begin by considering the interfacial phase
diagram associated with the phenomenon.

where s is the nearest-neighbor interaction, es is the surface-particle interac-
tion, n is the chemical potential, and n,( =0, 1) is the occupation number
for the ith cell in a cubic lattice. Confining surfaces bound the system at
2 = 0 and z = D + 1. The first sum runs over all nearest-neighbor pairs. The
second sum runs over all sites next to the surfaces. Phase behavior of
lattice-gas models in the presence of surfaces has been studied within the
mean-field approximation [8-10] and by simulations [11-14]. Here, we
are concerned with the phase diagram in terms of the bulk and the surface
fields.

Below the critical temperature, Tc, the system in bulk (i.e., without
surfaces) phase separates into two phases with average densities pl and ps
( = 1 —p1) at ucoex = — CE/2, where f is the number of nearest neighbors. In
the presence of confining surfaces, the phase coexistence is shifted to
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2. MEAN FIELD THEORY OF LATTICE GAS MODEL FOR
CONFINED FLUIDS

The lattice gas Hamiltonian is given by

where Cj_ is the number of nearest neighbor in the adjacent layer (for cubic
lattice, C = 6, Cj = 1). This relationship is the low-temperature approxima-
tion to Eq. (1). It describes a phase transition that occurs when the liquid
is in contact with the drying surfaces.

Alternatively, an evaporation transition can occur from a phase of the
confined fluid where a vapor film lies between the liquid and each drying
surface. The vapor film is formed from a predrying transition [9, 15]. It
occurs when the surface-particle attraction is so small that the attraction
from the bulk effectively pushes the particle away from the surface [16],
leaving a region of low occupancy next to the surface. The density away
from the surface rises to its bulk liquid density p1, at the given (n, E). In the
low-temperature limit, the predrying line is given by
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Because of the discreteness of the underlying lattice, the interface
between the low-density and the high-density phases in this model under-
goes a roughening transition at temperature TR [17]. This roughening
transition is not relevant to liquid-gas interfaces in real fluids, and in all
our considerations, T R < T < T C .

In the vapor-film phase, as the intersurface separation decreases, the
stability gained by the liquid film cannot support the liquid-gas interfaces,
and the system becomes metastable with respect to the gas state. From the
same considerations that lead to Eq. (3), evaporation of the vapor film is
predicted to occur when Au = 2agl/(D —2/) [2], where l is the average
thickness of the vapor film. At low temperature where the liquid-gas inter-
face is sharp and fluctuations can be neglected, the shift in coexistence can
be approximated by

The above-mentioned phase transitions can be predicted on the mean
field level. The free energy of the lattice-gas model is

where kB is Boltzmann's constant and B= l//kBT. Assuming translational
invariance in the x-y plane, the mean-field approximation for the free
energy and the average density profile, < n z > , can be obtained by minimizing
the functional [8-10],

The phase diagram for Be= 1.652 is calculated numerically and shown in
Fig. 1. The symbols (D, O, and A) denote the locations at which
coexistence occurs. The triple point, denoted by •, is where the three
phases coexist. The dotted lines are the low temperature limit given by Eqs.
(3)-(5). In this limit, a triple point is located at Au = e/(D-2), (£±e — 2ea)
= De/(D-2).
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Fig. 1. The mean field phase diagram as a func-
tion of the bulk and surface field at BE = 1.652.
Three phases are identified. The dotted lines are
estimates from low-temperature position of the lat-
tice-gas systems we simulated. Insets are schematic
depictions of the corresponding density profiles,
<n z) . From Eq. (3) , the slope of the line of
coexistence between the confined liquid and the gas
states varies with the surface separation as —D.
From Eq. (5) , the distance between the line of vapor
film-gas coexistence and the line for Au = 0 varies
with the surface separation as 1/(D - 2). As D -> x,
the phase boundaries for the gas state merge with
the line for Au = 0.

As interfacial profiles are more diffuse at high temperatures and small
Au, the agreement with the low-temperature predictions becomes less
satisfactory as we raise the temperature. This fact is illustrated in Fig. 2
where the phase diagram for Be = 0.976 is shown. Indeed, the deviation is
more pronounced as Ap. decreases, and the vapor-film state is more stable
than predicted from sharp interfaces. The predrying line in Fig. 2 ends
at a critical point. The critical behavior at Be>BcE (=4/£ classically)
originates from the mean field equation satisfied by the density at z = 1, D),

where 2' =2, D— 1, for z= 1, D), respectively. When (Be <4/(£ — 2£_J, as the
system approaches the critical point along the predrying line, the jump in
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Fig. 2. The mean-field phase diagram as a func-
tion of the bulk and surface field at fie = 0.976. The
line of coexistence between the liquid and the vapor-
film state ends at a critical point at about Au/2 - 0.21
and (f j .c-2«)/4= -0.42.

surface densities between the two states vanishes. The critical point moves
toward the triple point as temperature increases. When the two points
merge, the system can be found in only two thermodynamically stable
states, namely, the gas state and the high-density state. The predrying
transition can be observed only as a transition between metastable states in
the gas region.

3. THE PATHWAY TO EVAPORATION

We now turn to the dynamics of the confinement induced evaporation.
Since the vapor-film state contains two liquid-gas interfaces, the dynamics
may involve interfacial capillary-wave fluctuations [18, 19]. These fluctua-
tions are suppressed in the presence of a large bulk field, Au,. For systems
close to coexistence, however, these fluctuations cannot be neglected. Due
to the long-wavelength nature of capillary waves, one must account for
large system size.

Figure 3 shows a cross section of a nascent configuration in the Monte
Carlo simulation of a confined lattice gas [ 7 ]. The lateral dimension of the
LxLxD system is much longer than the separation between the confining
surfaces (L = 512 and D = 12). Capillary waves are evident in the figure.
Where the two interfaces approach one and other, vapor tubes may bridge
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Fig. 3. (a) Cross section of the L x L x Z ) lattice gas system
(L = 512 and D = 12) at about 10,000 passes. The straight lines
at the top and the bottom represent the drying surfaces. Cells
are black when occupied, and white when empty. In b, the
cross section is divided and enlarged to show the features more
clearly. The particular vapor tube seen here not grow to its
critical size but, instead, disappeared at a later simulation step.
The vapor tubes are not confined to the center of the system.
This system is not to be confused with lattice-gas simulation in
a cylindrical pore geometry (e.g., Ref. 20), in which the third
dimension is small ( ~D) and bounded.

the interfaces. One such tube is seen in Fig. 3. The boundary conditions
in the lateral direction are defined to mimic a liquid reservoir outside the
confined region (ni, = 1 at the boundary in the lateral direction). These fixed
boundary conditions pin the interfaces at the edges.

To examine the equilibrium phase transition properties, others
[11-14] have simulated lattice-gas models of confined fluids in slit
geometries, as we have done. But in these other works, the lateral size, L,
has not been much larger than the separation between surfaces, D, and
periodic boundary conditions have been applied parallel to the surfaces.
The lateral size and boundary conditions are, however, crucial in determining
the dynamics of the system, as we discuss now.

The lattice-gas parameters used in our simulation are Be= 1.653,
Bes = 0.01, BAU = 0.00025 89, and a = 2.2 A. These parameters are chosen
such that the corresponding lattice-gas system exhibits high surface tension,
close proximity to vapor-liquid coexistence, and high incompressibility.
With the given parameters, the system is located in the gas region of the
phase diagram, indicated by ® in Fig. 1. Using Glauber dynamics, and the
liquid phase as initial conditions, the time evolution of the grand canonical
lattice-gas system to its ultimately stable gas phase is followed.
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Fig. 4. Density profiles <nz> from Monte Carlo simulations
on lattice-gas systems (D = 12, L = 256, 512). The smoothed
curves are symmetrized averages over nz) at 10 simulation
times separated by 100 passes, i.e., at /-900, (-800,...,
t— 100, t passes. The bars, unsymmetrized, show the range of
density fluctuations over this time interval.

The configuration illustrated in Fig. 3 is obtained after 10,000 passes
(1 pass corresponds to L2D single-flip trials). Vapor films are clearly seen
between the surfaces and the liquid. A predrying transition has thus
occurred. For L = 256 and 512, these films develop within 1000 passes. In
contrast, a system with L= 16 remains in the confined liquid phase after
20,000 passes. Evidently, the formation of the vapor films is driven by the
growth of capillary-wave fluctuations. In Fig. 4, the average-density profiles
for L = 256 and 512 are shown. The average vapor-film thickness l is deter-
mined by the relation [19]:

The profile for L = 512 has a larger interfacial thickness (l= 1.97) than for
L = 256 ( l=1.80) . The difference is in accord with the estimation of film
thickness from the thickness of a free interface (i.e., without surfaces),
~V/m~^/2^[21].

If a vapor tube bridging the interfaces grows to a critical size, the
system approaches its equilibrium gas state with an expanding vapor tube
[7]. Thus, a plausible transition state for the evaporation coincides with
two close-together vapor films connected by critically large tubes. Figure 5
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Fig. 5. Schematic depiction of the transition state. The critical vapor tube is
of diameter 2 r ~ ~ w [Eq. ( l l a ) ] .

shows a schematic interfacial configuration at this transition state. The free
energy associated with the pictured fluctuation is approximately

The first term corresponds to the free energy for bringing the two interfaces
to a distance f away from the surfaces. Here, we have assumed that the
two interfaces are noninteracting. The second term is the free energy for
forming a tube of radius r and length w(=D — 2 l ) . At the saddle point
of AF, the critical size of the vapor tube and the associated free energy
barrier height are given by

When l« D/2, the evaporation path is an activation-controlled process.
The probability of reaching the transition state is given by

For systems with L = 512 and with ( = 1.97 after 10,000 passes, Eqs. (11 )
predict wc~2.7 and P^IO"5. For L = 256, with l=1.80 after 70,000
passes, P*~10-6.

The pathway for evaporation is very different for systems with periodic
boundary conditions. For any such finite system, the long-time nature of
the interfacial dynamics should correspond to quasi-one-dimensional diffu-
sion [22(a)]. In this situation, the effective interface mobility is enhanced
for small L [15, 22, 23]. With periodic boundary conditions and L= 16,
we find that the confined system evaporates within 10,000 passes. In this
case, the interfaces fluctuate freely into the thinning of the liquid film, and
the decay of the metastable state is diffusion-driven.
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Assuming the occurrence of evaporation obeys Poisson statistics, the
mean lifetime of the metastable state should be ~ 1 /P*. The effects of tran-
sient vapor tubes [24] will lower AF++ and thus increase Pl from what is
given by Eqs. (11). In particular, the presence of a bridging vapor tube
enhances the fluctuations that bring the interfaces close together. The prob-
ability of forming a single-column vapor tube across two interfaces
separated by w is P[(1)tube(w) oc exp[ — Be(4w — 2)/2]. Decreasing interfacial
separation therefore favors tube formation. This cooperative effect should
be important when the system is close to the transition state. To take
account of the film thickness which varies across the x-y direction, the
system can be divided into columns of size £2, where £ is of the order of
the bulk correlation length [19]. Let Pc(w, t; L) be the probability that the
column c having an average film thickness w = ^/6c«,-/^2 at time t. The
probability of observing a narrow tube in the system at time t is given
roughly by

With Pc(w, t; L) calculated from simulations, we find pb(104; 512) ~ 10~3.
For L = 256, 3^( 104; 256) ~ 5 x 10~5 and 0^(1 x 104; 256) ~ 5 x 10~4.

The evaporation process captured in our simulations is in accord with
the above analysis. In the several runs we have performed for L = 512, the
systems evaporate in 10,000 to 20,000 passes. The thin liquid film bounded
by the two liquid-gas interfaces has an average thickness w of about eight
lattice spacings. The film thickness fluctuates due to thermal excursions of
the interfaces. Just before evaporation, the two interfaces are locally
separated by about three lattice spacings and are bridged by a tube that
then expands. The system with L = 256 remains in the metastable state up
to 70,000 passes. This lengthening of evaporation time, from 10,000-20,000
passes to over 70,000 passes, is due to the diminished amplitude of
capillary waves that occurs with the smaller system.

Capillary-wave fluctuations can also be suppressed by placing attractive
sites on the surfaces. We have performed simulations on the inhomogeneous
surfaces [7]. The simulation time required to observe evaporation in these
systems is longer than for systems with uniform surfaces. Interfacial growth
and fluctuations are hindered due to occasional pinning of the induced
interfaces at the attractive sites. The interaction between the two liquid-gas
interfaces that arises from bridging vapor tubes should be reduced according
to Eq. (12). Additionally, the barrier height to reach the transition state
increases according to Eq. ( 1 1 a ) . The surface inhomogeneity may also
reduce the prefactor in the expression for Pt in Eq. ( l i b ) .
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